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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1996, VOL. 15, NO. 1, 325-344 

Statistical mechanics of pendular molecules 

by BRETISLAV FRIEDRICH and DUDLEY HERSCHBACH 
Department of Chemistry, Harvard University, Cambridge, MA 021 38, USA 

When molecules are subjected to an external electric field, static or radiative, the 
interaction with either permanent or induced dipole moments creates pendular 
eigenstates, directional superpositions or hybrids of the field-free rotational states. 
These hybrids reflect the anisotropy of the interaction; for a linear molecule this is 
proportional to cos 8 for a permanent dipole and to cosz 8 for an induced dipole, 
with 8 the angle between the molecular axis and the field direction. In the weak-field 
regime, the molecular axis tumbles through 360°, but in the strong-field limit it is 
confined to harmonic librations about the field direction. Here we treat the 
statistical mechanics of pendular states of linear molecules, either polar (with a 
permanent dipole moment p) or nonpolar but polarizable (with a polarizability 
anisotropy Aa contributing to an induced dipole moment). The partition function 
and the thermodynamic properties and other ensemble averages can be specified by 
two reduced variables involving p or Aa, the field strength, rotational constant, and 
temperature. A simple approximation due to Pitzer enables the partition function 
to be cast in terms of the classical result with quantum corrections derived from the 
harmonic librator limit. This provides explicit analytic formulas which permit 
thermodynamic properties to be evaluated to good accuracy without computing 
energy levels and state sums. We also evaluate the average orientation or alignment 
of the molecular dipoles and examine field-induced shifts of chemical equilibria. 

1. Introduction 
The thermal properties of ensembles of molecules subject to electric or magnetic 

fields is a venerable subject (Langevin 1905, Debye 1929, Van Vleck 1932). However, 
although the major conceptual aspects are well-understood, virtually all simple 
working approximations, such as the Langevin-Debye function, pertain either to the 
classical limit or to the weak-field regime. This has been adequate for Kerr effect 
measurements and many other experiments dealing with weak field-induced orien- 
tation. Recent work focuses instead on the strong-field, low-temperature regime, 
where quantum effects become substantial. Since typically many eigenstates con- 
tribute, numerical calculations are tedious. Here we show that, for the prototype case 
of a linear molecule, remarkably simple and accurate approximations for the partition 
function and thermodynamic properties can be obtained by means of a scheme devised 
by Pitzer to treat hindered internal torsional vibrations (Pitzer 1937, Pitzer and Gwinn 
1942). The results are applicable throughout the weak- to strong-field regime, for 
either static or radiative fields. We consider interactions with either permanent electric 
or magnetic dipole moments (see also Friedrich and Herschbach 1993) or with an 
induced dipole moment resulting from the molecular polarizability. 

In $2,  we outline pertinent aspects of the interaction potentials and eigenstates. The 
eigenproperties, which for fairly strong fields deviate markedly from second-order 
Stark or Zeeman effects, characterize pendular states intermediate between the free 
rotor and harmonic librator limits. The directional properties and field dependence of 
such states have been examined recently for molecules with permanent electric dipole 
moments (Friedrich and Herschbach 1991a, b, Block et al. 1992, Rost et al. 1992), 
magnetic dipole moments (Slenczka et al. 1994), both electric and magnetic dipoles 
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326 B. Friedrich and D .  Herschbach 

(Friedrich et al. 1994a, b), or only the polarizability interaction (Friedrich and 
Herschbach 1995, Kim and Felker 1996). Reactive and inelastic collisions of pendu- 
larly oriented polar molecules have also been studied (Loesch and Remscheid 1990, 
1991, Friedrich et al. 1992, Loesch and Moller 1992, 1993, Van Leuken et al. 1995). 

In 63 we obtain the partition function as a product of three factors, each dependent 
on a single dimensionless variable involving a reduced temperature and a reduced 
interaction parameter. The utility of the Pitzer scheme is demonstrated and limiting 
cases examined. In 54, corresponding approximations for the thermodynamic 
functions are obtained for the Gibbs free energy, enthalpy, entropy, and heat capacity 
functions, all given as explicit analytic formulas which permit the thermodynamic 
properties to be evaluated without computing energy levels. 

In 6 5 we derive expressions for the average orientation of permanent and induced 
dipoles. These include explicit quantum corrections for the Langevin-Debye formula 
and its extension to the induced dipole case. In 56 we compute field-induced shifts of 
chemical equilibria for some simple exchange reactions of diatomic molecules. 

2. Eigenproperties of pendular molecules 
For simplicity we consider linear molecules without electronic angular momentum, 

but the chief results can be extended to other categories by standard means. The 
eigenenergies of the field-free rotor states IJ, M )  are given by 

where B is the rotational constant, J i s  the total angular momentum quantum number, 
and M the projection on the space-fixed Z-axis. By virtue of the different orientations 
of the J-vector, these energy levels are (25+ 1)-fold degenerate. 

2.1. Permanent dipoles 
For polar molecules, the interaction potential is given by 

in units of the rotational constant B, where 0 is the angle between the molecular electric 
dipole moment ,u and the direction of the electric field E and o = p / B  is a 
dimensionless interaction parameter. An analogous potential obtains for the case of a 
permanent magnetic dipole moment coupled to the internuclear axis, subject to a 
magnetic field (Friedrich and Herschbach 1992). The interaction (2) creates coherent 
superpositions or hybrids of the field-free rotor states in which the molecular axis 
librates about the direction of the field like a pendulum. These pendular states, 
lj, M ;  a), are labelled by the good quantum number M and the nominal value of 
4 the angular momentum of the field-free rotor state that adiabatically correlates with 
the high-field hybrid function, Ij, M ;  w + 0) +IJ, M ) .  For fixed values of j a n d  M the 
pendular state depends solely on the interaction parameter w which determines the 
range of Jinvolved in the hybrid wavefunction. For large co, the pendulum eigenstates 
become increasingly directional with energies that differ greatly from the rotor levels. 
In the harmonic limit (o -, a) the levels become ( N +  1)-fold degenerate with 
eigenenergies 

5 = - o + ( N +  1)(2w)1’2 (3) B 
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Figure 1. Eigenenergies for a rigid linear dipole in a static electric or magnetic field, in units 
of the rotational constant, B. On the left are the-field-free rotor states IJ,M); these 
adiabatically correlate with the hybridized states JJ, M ;  w) created by the field. On the 
right are the equispaced harmonic librator states IN, M )  attained in the high-field limit. 
In the middle the energy levels for w = 5 are shown together with the interaction 
potential, -wcos 19. 

where N = 25"- [MI is the total number of the librator quanta; 5"- IMI is the number 
of @nodes (in the range 0"-180") and IMI the number of #-nodes (in the range 0"-360"). 
Figure 1 shows for co = 5 the typical pattern of energy levels, in contrast to the free- 
rotor and harmonic librator limits. Qualitatively, the lowest states within the cosine 
potential well are librator-like whereas those appreciably above the barrier top 
(8 - f 180") become rotor-like. 

2.2 Induced dipoles 
For nonpolar but polarizable molecules the leading interaction with an electric 

field E is with the polarizability tensor, which has components all and aI parallel and 
perpendicular to the molecular axis. Even for polar molecules, the polarizability 
contributes the leading interaction with the electric field of nonresonant radiation, if 
the frequency is too high for the permanent dipole to follow. Then the interaction 
potential is 

again in units of the rotational constant, with 8 the angle between the molecular axis 
and the electric field direction. The coefficient 

is a dimensionless anisotropy parameter, and 

q I  = pg). 
For plane-wave radiation with electric field strength E = E* cos(2zvt), and nonresonant 
frequencies much greater than the reciprocal of the laser pulse duration, v % l/rp, 
averaging over the pulse period z, converts E' in (6) to 2:. Since for linear molecules 
the polarizability component parallel to the axis always exceeds that perpendicular, 
all > aL,  the anisotropy parameter AW > 0; hence V ,  is a double-well potential, with 
minima at 6' = 0" and 180". The eigenstates 15", M;Ao) are labelled by IMI and the 
nominal value designating the angular momentum for the field-free rotor state that 
adiabatically correlates with the high-field hybrid function. 
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328 B. Friedrich and D .  Herschbach 
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Figure 2. Eigenenergies for a linear induced dipole in an external electric field, in units of the 
rotational constant, B. On the left areihe field-free rotor states IJ, M ) ;  these adiabatically 
correlate with the hybridized states IJ, M ;  Aw) created by the field. On the right are the 
equispaced harmonic librator states Ilv, M )  attained in the high-field limit. In the middle 
the energy levels for Aw = wI = 9 are shown together with the interaction potential, 
- m1 - AW COS‘ 6. 

In the high-field limit, Am -, co, the range of 8 is confined near the potential 
minima and the eigenenergies become 

for (J”- IMI) even, and 

for (J”- IMI) odd. Hence states with J”= N +  1 for j- IMI odd and J”= N for .f-lM( 
even, with the same N = 2(k + [M1/2) and k = 0, 1, 2,  have equal energies, EN/B: 

EN - - Ao - ool + 2(N+ 1) (8) B= 
and each of the states is 2(N+ 1)-degenerate. Figure 2 shows the energy levels for a 
particular choice of the interaction parameter (Am = 9 = a,), together with the levels 
in the field-free rotor and harmonic librator limits. Note that in the intermediate 
regime, tunnelling occurs between the two equidistant potential minima for the bound 
states (Friedrich and Herschbach 1996). 

3. The pendular partition functions 
We consider a canonical ensemble of molecules and as usual take the translational, 

electronic, vibrational, and rotational or pendular modes of motion as separable 
(although the Born-Oppenheimer approximation is somewhat less accurate in the 
presence of a strong field). For a given mode of molecular motion at temperature T, 
if Boltzmann statistics apply, the occupation number n, of the ith energy level with 
energy Ei above the ground level Eo and degeneracy gr is given by 

n, exp[-(E,-Eo)/kT] 
- = 91 n Q (9) 
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Statistical mechanics of pendular molecules 329 

where 

is the canonical molecular partition function pertaining to the given mode and n is the 
total number of molecules in the ensemble possessing that mode. In general, for the 
pendular mode the exact partition function (10) must be evaluated numerically, since 
as seen in figures 1 and 2 the spacing of the energy levels is not simple except in the free- 
rotor and harmonic librator limits. However, since the energy levels for any fixed field 
strength are proportional to the rotational constant B, the partition function and 
related quantities depend only on a reduced temperature, Y = kT/B, in addition to the 
reduced interaction parameter. Accordingly, for permanent dipoles Q = Q(m, Y); for 
induced dipoles Q = Q(Ao,  Y). Note that, since in (4) the parameter o1 produces only 
a uniform shift of the energy levels, it does not contribute to the partition function 
(10); but mL does enter Eo and thus affects the thermodynamic functions that involve 
E,, the free energy and enthalpy. 

We find that a simple procedure, utilizing the classical partition function Q,, and 
subsequently applying quantum corrections, provides a remarkably accurate analytic 
approximation for the complete partition function Q. This procedure was introduced 
by Pitzer (Pitzer 1937, 1940, Pitzer and Gwinn 1942) in treating hindered internal 
rotation. The partition function Q,, is given by the classical counterpart of (lo), 
namely 

Qci = ~ 2ni:T/rd#lexp[- V(B)/kT]sin8dB = exp[- V(O)/kT]sin8d8 

(11) 
with h the Planck constant and I the moment of inertia, related to the rotational 
constant by B = €‘i2/21, with fi = h/27c; V(8) is the potential energy of the permanent 
or induced dipole and Y = kT/B the reduced rotational temperature. 

The Pitzer-Gwinn Ansatz permits the partition function Q to be recast as product 
of three factors : 

given by 
Q = QI €!I, QiiI (124  

Q,= Y ( W  

and enables a neat separation of variables: the first factor Q, is independent of the field 
and depends only on Y ;  the second factor, Q,,, depends only on the ratio of the 
interaction parameter (m or Am) to the reduced rotational temperature Y ;  the third, 
QIII, serves to correct the classical version of the partition function, Q,, = Q, Q,,, for 
the effects of quantization. For this we find it is a very good approximation to use the 
ratio [Qq/Qc,],ib of the quantum partition function in the harmonic librator limit, 
[QSllib, to its classical limit, [QCJlib; the correction [Qq/Q,JIib depends on the ratio of 
the level spacing in the harmonic librator limit to the reduced rotational temperature. 
The partition function Q of (12a) coincides with Q,, at low fields and high temperatures 
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Figure 3. Field-dependent portion of classical partition function, Q,, = Y Q,,(g) of (12b, c) 
and (13), for permanent dipoles (spherical pendulum) as a function of the ratio 
a = w /  Y = pF/kT.  Also shown is the corresponding plot for a planar pendulum. 

and with (Q&, at high fields and low temperatures. This limiting behaviour imposes 
restrictions on the choice of energy reference of the Q,, and [Qq/Q,.,],ib terms and 
provides a consistency criterion for the definition of the respective independent 
variables. 

Since the population of the ground state is related to the partition function by 
no = n / Q ,  no grows at a given temperature as the interaction parameter (w or Aco) 
increases and the energy levels are drawn further apart. Because the lowest rotational 
states are hybridized most easily, such 'condensation' of molecules into the low-lying 
states occurs at field strengths substantially lower than those required to attain the 
harmonic librator limit. 

Explicit analytic expressions are readily obtained for each factor of (12). Hence the 
partition function and thermodynamic properties can be evaluated to good accuracy 
without actually determining the field-dependent eigenergies or computing the state 
sums called for in (10). We consider the two factors in turn for both polar (permanent 
dipole) and nonpolar (induced dipole moment) linear molecules. 

3.1. Permanent dipoles 
By referring the energy to the potential minimum, i.e. by taking V('(B)/B = 

co + V,(S) = o(1- cos 6), the integral (12 c) yields 

QJa) = exp (- a) a-' sinh a (13) 
where a = w/ Y. Figure 3 plots the function Q,,(a) = Qc,/ Y which approaches unity as 
a -+ 0 and approaches 1 /(2a) as a + co. Included for comparison is the corresponding 
result for the planar pendulum case, Q,,/Q, = exp (- a)Zo(a), for which the field-free 
rotor partition function is Q, = (n Y)''' ; 1, is the modified Bessel function. The planar 
pendulum, solvable in terms of Mathieu functions, has long been employed in treating 
hindered internal rotation in molecules (Pitzer and Gwinn 1942, Li and Pitzer 1956) as 
well as an approximate model for the interaction of rotating molecules with an electric 
field (Friedrich and Herschbach I991 a, b, Friedrich et al. 1991). 

In order to obtain the correction factor QIII in (124, we first consider the quantum 
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JJ' Planar I 

0.01 0.1 1 10 100 1000 
U 

Figure 4. Points give ratio of exact partition function for permanent dipoles, as calculated 
from (10) for potential (2), to the classical partition function Q,, = Y Q J a )  of (12b, c) 
and (13), for w = 5 (squares), 20 (triangles) and 100 (diamonds); full curve gives quantum 
correction factor P ( u )  computed for harmonic librator from (1 6). Corresponding points 
for a planar pendulum were obtained from tables of Pitzer and Gwinn (1942) and 
compared with correction factor for a one-dimensional harmonic oscillator. 

partition function in the limit u) 00, with energy levels given by (3): this is the 
partition function for an isotropic two-dimensional oscillator with frequency B(2w)'''. 
By referring the energy to the lowest librator level, i.e. by taking E o / B  = -m+ (2m)"', 
we obtain 

CU 

[QqIlib = C ( N +  1>exP(-Nu) = [1-exP(-U)I-' [Qq(U)llib (14) 
N - 0  

where u = (20)''~/ Y. The ratio of the partition function for the harmonic librator, as 
given in (14), to its classical limit (u -+ 0) is then 

[Qq/QCJlib = u2[1 -exp (- u)]-' E P ( u ) .  

Q(m, Y) = Y[exp (- a)] a-' sinh a uz[ 1 -exp (- u)] -~ .  

(15) 

(16) 

Combining (12), (13) and (15) yields the pendular partition function in the form 

The consistency of (1 3) and (1 5 )  is assured by the following limiting behaviour : at 
a or u + 0, Q/Q,, -+ 1 and simultaneously Qcl/ Y + 1 and + 1 so that Q -+ Y there. 
In the high-field limit, at a, u + co, Q/(Qq),i, = u' YQ,,(a + co) = 1. 

Figure 4 displays a test of the approximation. The ratio of the exact quantum 
partition function from (lo), for u) = 5 ,  20, 100, to the classical version Q,, is seen to 
depend essentially only on u and to agree closely with the librator ratio r' (u). Similar 
agreement obtains for the planar pendulum, in accord with the tests provided by Pitzer 
and Gwinn in terms of thermodynamic functions. Although Qlib is not a good 
approximation to the partition function for either a spherical or a planar pendulum, 
except for large values of u, the quantum/classical ratio for the quadratic librator 
potential mimics very well that for the cosine potential almost over the full range. The 
exception occurs for very low values of the reduced temperature, Y < 1, when both 
a -+ co and u + co ; then the librator ratio becomes much too large. In practice, this 
is not a significant limitation, since such low values of Y very seldom obtain. 
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332 B. Friedrich and D.  Herschbach 

Table 1. Values of the function A-l = exp ( -a) x1/2 (- a)-112 erf [( - 

U A-’ a A-l a A-’ U A-’ 

0.1 
0-2 
0-3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.8719 
1.7535 
1.6442 
1.5431 
1.4496 
1.3630 
1.2829 
1.2087 
1.1399 

1.0762 
0.6399 
0.4204 
0.30 1 3 
0.23 14 
0.1870 
0.1 569 
0.1352 
0.1 188 

10 
20 
30 
40 
50 
60 
70 
80 
90 

0.1061 
0.0514 
0-0339 
0-0253 
0.0202 
0.0 168 
0.0 144 
0.0 126 
0.01 1 1 

100 
200 
300 
400 
500 
600 
700 
800 
900 

0.0101 
0.0050 
0.0033 
0.0025 
0.0020 
0.00 17 
0.00 14 
0.00 1 3 
0.00 1 1 

3.2. Induced dipoles 
For the induced dipole moment interaction the integral ( 1 2 4  is again analytic. By 

referring the energy zero to the potential minimum, i.e. by taking V(O)/B = 
Ao(1 -cos2 Q), we have (Gautschi 1964) 

where A-l = [exp ( - a)] d/’( - a)-’/’ erf [( - u ) ~ / ~ ]  and a = Am/ Y. The function A is 
tabulated for a range of the parameter a in table 1. 

The quantum partition function in the harmonic librator limit, for E J B  = 
-Am - wI + ~ ( A W ) ” ~ ,  becomes 

m 

Qlib = 2 C (N+ 1) [exp (- Nu)] = 2[1 -exp ( -u)]-~ = Q,,,(o) (1 8) 
N - 0  

where v = ~ ( A O ) ” ~ /  Y. Consequently, the correction factor in (12d)  becomes 

Qm(o) = [Qq/Qciliib = 02[1 - ~ X P  (-u)l-z r2(4. (19) 
Combining (12), (17) and (19) yields the approximate partition function 

(20) 
1 

2 A  
Q(Ao, Y) = Y-uv2[1 -exp(-o)]-2. 

Figure 5 displays a test of the approximation. The ratio of the exact quantum 
partition function from (10) evaluated for tabulated eigenenergies (Stratton et al. 
1956), for A o  = 9, 25, 100, to the classical version Qcl is again seen to depend 
essentially only on o and to agree closely with the librator ratio P ( o ) .  

The partition function (20) is well-behaved in the low-field limit: for a, u -+ 0, 
Q/Q,, -+ 1 and simultaneously Qcl/ Y + 1 and T+ 1 so that Q -, Y ;  in the high-field 
limit, at a, u -, co, Q/(QJlib = v2 YQII(a + 00) = I for u = ( ~ A O ) ’ / ~ / Y ,  a spacing that 
differs by a factor of 2lI2 from that of (8). This follows from the asymptotic expansion 
erf [( - i[exp(a)] ( T C U ) - ~ / ~  at a + co, yielding Q,,(a + co) = (2a)-’. 

The reduced rotational temperature Y represents the classical limit of the rotational 
partition function 

J - 0  
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15 

10 - - 
Q 

- 5  
C 

0 
0.1 1 10 100 1000 

V 
Figure 5. Points give ratio of exact partition function for induced dipoles, as calculated from 

(10) for potential (4), to the classical partition function Q,, = YQ,,(u) of (12b, c) and (17), 
for Am = 9 (squares), 25 (triangles) and 100 (circles); full curve gives quantum correction 
factor P ( u )  computed for harmonic librator from (19). 

At low temperatures Y and (21) differ appreciably. A correction for this can be made 
by inserting into (124 another factor, the ratio of the quantum Q,, to its classical 
limit. Unless the interaction (u, or Am) is zero or much smaller than Y, however, such 
a correction is not warranted. 

4. The thermodynamic functions 
Since the Helmholtz free energy F, integral energy U,  entropy S, and heat capacity 

C are derived from the logarithm of the partition function (see e.g. Atkins 1990) the 
factorization provided by equations (16) and (20) gives the contribution of the 
pendular mode to all such functions @ as a sum of three terms, each dependent on a 
single dimensionless reduced variable : 

Tables 2 and 3 list these terms for the permanent and induced dipole moment 
interactions. The thermodynamic functions are as usual per mole rather than per 
molecule, so the gas constant R appears (rather than Boltzmann’s constant k).  As the 
functions pertain to a nominal ideal gas, the Gibbs free energy is given by G = F+ RT, 
the enthalpy by H = U +  RT, and the heat capacities at constant pressure and volume 
are related by C, = C, + R. The contribution from the pendular mode thus is the same 
for G and F, for H a n d  U,  and for either heat capacity. 

For convenience, we list the conversion factors relating the physical parameters in 
customary units to our dimensionless variables. With temperature in K and rotational 
constant B in cm-l, for the permanent electric dipole moment p,, in Debye units and 
electric field strength E in kV cm-l, or magnetic dipole moment p, in Bohr magnetons 
and magnetic field strength H in Tesla units (= 10 kGauss), we have: 

Y = 0.696 1 T/  B 
a,, = 0*0168p,,~/B 

O, = 0 . 4 6 6 8 , ~ ~  HIB.  
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v 

0.1 1 10 100 
r 

Figure 6. Total partition functions Q(w, Y) for permanent dipoles determined from (16) for 
pendular mode (full curves), as functions of reduced temperature Y for four values of 
reduced interaction strength w .  The field-free limit ((o = 0) pertains to the rotational 
partition function Q,,, of (21); the high-field limit (dashed curves) to the harmonic 
librator function Q,,,(u) of (14). By virtue of the logarithmic ordinate scale, these plots 
also show the negative of the Helmholtz free energy function, - F / R T ;  see table 2. 

A@/--- - - -  , 0 I L 

0.1 1 10 100 
r 

Figure 7. Total partition functions Q(A(o, Y) for induced dipoles determined from (20) for 
pendular mode (full curves), as functions of reduced temperature Y for four values of 
reduced interaction strength Am. The field-free limit (Am = 0) pertains to the rotational 
partition function Q,,, of (21); the high-field limit (dashed curves) to the harmonic 
librator function Qlib(v) of (18). By virtue of the logarithmic ordinate scale, these plots 
also show the negative of the Helmholtz free energy function, - F / R T ;  see table 3. 

For an induced dipole moment due to a polarizability anisotropy Aa in A3 in an 
electric field E in kV cm-' the conversion is given by 

AW = 3 x 10P AUE2/B; (25 a> 
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B. Friedrich and D.  Herschbach 

0 
0.1 1 10 100 

r 
Figure 8. Internal energy, UIRT, for permanent dipoles as a function of reduced temperature, 

computed from (16) with factors listed in table 2, for w = 0,5,20 and 100. Dashed curves 
show the harmonic librator limit. Curve for w = 0 calculated with Q,, of (21). 

2 ,  I 'f 

. I  - 1  _ - - -  
. .  . ,+x =-I---:? 

0.1 1 10 100 
r 

Figure 9. Internal energy, UIRT, for induced dipoles as a function of reduced temperature, 
computed from (20) with factors listed in table 3,  for Am = 0, 9, 25 and 100. Dashed 
curves show the harmonic librator limit. Curve for Am = 0 calculated with Q,, of (21). 

when the electric field is provided by a (nonresonant) electromagnetic wave with 
intensity I in W cm-2, 

A o  = 5 x 10l2 AaIIB.  (25 6 )  
Figures 6 and 7 illustrate the field dependence of the Helmholtz free energy, as 

-F/RT = 1nQ for ensembles of permanent and induced dipoles. At a given 
temperature, the presence of field reduces the partition function markedly below that 
for a free rotor, but, except in certain regions, it differs substantially from that for a 
harmonic librator. The results obtained from the Pitzer Ansatz of (16) and (20) coincide 
with our numerical calculations employing (10) within 5 % and often fall within the 
width of the plotted curves. Figures 8-13 show corresponding results for the internal 
energy, entropy and heat capacity for the permanent and induced dipoles. In the 
presence of the field, the free energy and heat capacity increase, the internal energy and 
entropy decrease. Tables 4 and 5 give the leading terms for expansions that describe 
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0.1 1 10 100 
r 

Figure 10. Entropy, SIR,  for permanent dipoles as a function of reduced temperature, 
computed from (16) with factors listed in table 2, for o = 0,5,20 and 100. Dashed curves 
show the harmonic librator limit. Curve for w = 0 calculated with Q,, of (21). 

Ac~FO..--' . .-.. , .... I 0 I 

0.1 1 10 100 
r 

Figure 11. Entropy, SIR, for induced dipoles as a function of reduced temperature, computed 
from (20) with factors listed in table 3, for Am = 0,9,25 and 100. Dashed curves show the 
harmonic librator limit. Curve for Aw = 0 calculated with Q,,, of (21). 

the field-induced changes for small o and Am or large Y. For sizeable values of the 
interaction parameter, the transition from dominantly librational motion at low 
temperatures to largely rotational motion at  higher temperatures is evident in all the 
thermodynamic functions, but becomes most striking in the prominent bumps that 
appear in the temperature dependence of the internal energy and heat capacity. 

Previous discussions of quantum statistical mechanics for molecules subject to 
electric or magnetic fields go back to Debye (1929) and Van Vleck (1932) but have been 
limited to the weak-field case, corresponding to  a quadratic Stark of Zeeman effect. 
The partition function is then near the classical limit, and the results are essentially 
equivalent to including just the terms up through order a2 in our table 4 or u2 in table 
5.  By means of the Pitzer procedure, however, it proves easy to attain good accuracy 
for the full range of interaction strengths. 
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r 
Figure 12. Heat capacity, C/R, for permanent dipoles as a function of reduced temperature, 

computed from (16) with factors listed in table 2, for w = 0, 5,20 and 100. Dashed curves 
show the harmonic librator limit. Curve for w = 0 calculated with Q,, of (21). 

0.1 1 10 100 
r 

Figure 13. Heat capacity, C/R ,  for induced dipoles as a function of reduced temperature, 
computed from (20) with factors listed in table 3, for 4 w  = 0, 9, 25 and 100. Dashed 
curves show the harmonic librator limit. Curve for 4 w =  0 calculated with Q,, of (21). 

Although our treatment here is restricted to linear molecules without electronic 
angular momentum, we expect that more general cases can also be handled by 
augmenting standard methods with the Pitzer procedure. Often the classical partition 
function can be readily evaluated and separated into convenient factors (Herschbach 
et al. 1959) and the simple harmonic oscillator form for the quantum correction seems 
likely to be serviceable whenever the potential becomes quadratic in a suitable limit 
(Pitzer and Gwinn 1942, Li and Pitzer 1956). 

5. Average molecular orientation and alignment 
The Langevin-Debye function (Langevin 1905, Debye 1929) describes the average 

orientation of a Boltzmann distribution of rotating rigid permanent dipoles not 
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Table 4. Weak-field expansions of thermodynamic functions for permanent dipoles. 

- RT AF 
2( I-; +...) -2(;-;+...) 

- AU 1+;+ ...) - 2 ( ; - - + . . . )  U2 
RT 3 

- A S  R l-.-%( I -;+ ...) + 2  (& ...) 
- Ac R q-;+ 3 ...) -2(&...) 

Table 5. Weak-field expansions of thermodynamic functions for induced dipoles. 

AF 2a 2a2 4a 
RT 3 45 (' +63+.")  
- 

AU 2a 4a2 2a 
RT 3 45 ("%+"') 

- AS 
R 

- 

-45( 2a2 1 fZ+  8a ...) 

-2(:-f+...) 2 24 

-2(!-f+...) 2 12 

+ 2 (&. . .) 
- 2 (& . . .) 

interacting with each other but subject to an external field uniform in magnitude and 
direction. It corresponds to the classical limit of the partition function, which has been 
adequate for a host of experiments dealing with weak field-induced orientation, such 
as Kerr effect measurements. Quantum effects become substantial, however, in the 
strong-field, low-temperature regime explored in recent experiments (see e.g. Friedrich 
and Herschbach I991 b). Numerical calculations are straightforward but tedious since 
for large o or Am and small a or a many pendular eigenstates typically contribute. We 
find that the Pitzer Ansatz again proves useful-for both the permanent and the 
induced dipole moment case ; it provides an analytic approximation that surplants 
numerical computations for much of the range exhibiting marked quantum effects. 

5.1 Permanent dipoles 
The orientation of the molecular dipole in a given state i is specified by the 

expectation value of the cosine of the angle between the dipole axis and the field 
direction, (cos S)i. The average orientation is then obtained from the ensemble 
average 

According to the Hellmann-Feynman theorem, (cos O)Z can be evaluated for a given 
state from the o-dependence of the corresponding eigenenergy : 
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v v 

0.1 1 10 100 
a 

Figure 14. Average orientation cosine, ( ( c o s ~ ) ) ,  calculated from (31) for an ensemble of 
permanent dipoles as a function of a = w/Y, at w = 10, 20 and 100. A numerical 
calculation for w = 20 coincides with approximation (31) within the thickness of the 
plotted curve. Also shown (dashed) is the classical Langevin-Debye dependence (32) and 
its low-field limit (PT, dotted). 

By combining (9), (lo), (26) and (27) we obtain: 

a In Q(w, Y) 
aw 

((case)) = (COS8),+ Y 

The choice of Eo/B made in deriving Q(w, Y), see (13) and (15), ensures the correct 
limiting properties of the thermodynamic potentials but, as seen from (28), this choice 
singles out the orientation cosine of the ground energy level in the average orientation. 
Consequently, (cos O>, cannot be evaluated from Q(w, Y). However, by shifting the 
energy zero to the minimum of the potential, see the appendix, we obtain a 
renormalized partition function 

Q0(W r )  = exp(-Eo/kT)Q(w, r). (29) 
This yields the complete ensemble average : 

a In Q0b, Y) 
aw . ((cos8)) = Y 

As in the case of the entropy or heat capacity, the average orientation is independent 
of the choice of zero energy for the partition function; this makes (28) and (30) 
equivalent. 

By substituting for Qo(w, Y) into (30) from (A4) we obtain the result 

( (cos~))  = cotha+(2/w)1/2[1 -exp(u)]-1-(2co)-1/2. (31) 
We note that for u + 0 equation (30) yields the classical Langevin-Debye formula 

(32) 
1 

((cos8)),, = cotha-- = YdlnQ:,(w, Y)/aw. 
a 

Figure 14 displays this approximation for w = 10,20,100. The chief effect is simply 
a 'rounding-off' of the Langevin-Debye result at large a. This rounding becomes less 
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I I I .- 

I 

0.9 
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0.7 - 0.6 

0.5 

0.4 

0.3 

n a 

W B 

0.1 1 10 100 
a 

Average alignment cosine, ((cos2Q)), calculated from (34) for an ensemble of 
induced dipoles as a function of a = Aw/Y, at Am = 9, 25 and 100. A numerical 
calculation for w = 25 coincides with approximation (34) within 5%.  Also shown 
(dashed) is the classical dependence (35)  and its low-field limit (PT, dotted). 

Figure 15. 

pronounced as o increases. We find agreement with numerical calculations is good for 
o = 20. Also shown is the second-order expansion of (32) for a + 0, a/3, which 
coincides with average orientation obtained by second-order perturbation theory 
(PT). 

5.2. Induced dipoles 
The alignment of a nonpolar molecule in a given state i is specified by the 

expectation value of the squared cosine of the angle between the dipole axis and the 
field direction, (cos2 S),, which, in turn, can be obtained from the field dependence of 
the eigenenergy via the Hellmann-Feynman theorem. Consequently, the ensemble 
polarization is given by 

a In Qo(Ao, Y) 
aAw 

= Y  (33) 

in analogy with the permanent dipole case described in the previous paragraph. 
Substitution from (A8) leads to the result 

a 2a (Aw)’” 1 -exp(u) u 
A 1  <<c0s2e>> = ---+- 

Again, for u + 0 we obtain the classical result 

A 1 alnQ:l(Ao, Y) 
a 2a a A o  . 

((cos2S)),, = --- = Y 

(34) 

(35) 

Figure 15 displays this approximation for A o  = 9,25, 100. The chief effect is again 
a ‘rounding-off’ of the classical result at large a. This rounding becomes less pro- 
nounced as A o  increases. Also shown is the second-order expansion of (35) for a + 0, 
which gives ;+&;a; this coincides with the result of the second-order perturbation 
theory (PT). 
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s 
0.1 

0.01 
1 10 100 lo00 

r 
Figure 16. Field-dependent portion ofequilibrium constant K9 for permanent dipole reactions 

of type (R2) as a function of reduced temperature Y and reduced field strength w = 10, 
20 and 100. 

6. Field-induced shifts of chemical equilibria 
The factorization provided in (1 2) by the Pitzer-Gwinn Ansatz facilitates 

evaluating equilibrium constants for reactions of molecules with permanent or 
induced dipole moments in the presence of strong external fields. The equilibrium 
constant for a chemical reaction thus takes the form KoK,, where KO denotes the 
constant that pertains in the absence of the field. The factor KF for either the 
permanent or the induced dipole molecules has the same form as the usual equilibrium 
products but with the partial pressure or concentration b] of each dipolar species 
replaced by K,(CO, Y) = Q,(w, Y) from (16), or rc,(wL,Aco, Y) = Q,(wL,Aco, Y), from 
(21). Note that the effect of the wL term, which shifts uniformly the energy levels of a 
given species, does not necessarily cancel out in the equilibrium product. Thus species 
with larger coL have smaller IC,(O~, Am, Y). For each species that does not interact with 
the field (such as for atoms or spherical molecules), the b]-factor is replaced by unity. 
Examples include three types of exchange reactions of diatomic molecules : 

A+BC*AB+C K = K ~ ~ / K ~ ~  (R1) 
A, + B, c-) 2AB = (IC,,)' (R2) 

(R3) AB + CD ++ AC + BD K = xAC xBD/xAB xCD 

Type (R2) is typically expected to exhibit the strongest field dependence, since in (RI) 
and (R3) the factors tend to balance out. In (R2), since at a given temperature the free 
energy of the dipolar product AB increases, the reaction will be inhibited as w 
increases. Figure 16 displays the functional dependence of the K,(w, Y) factor. For 
instance, the curve for w = 10 pertains to I, + C1, t--f 2IC1 at a field strength of about 
50 kV cm-l; the reduced temperature scale for ICl is such that the minimum of the 
curve (at Y - 5) comes at about 1 K. Thus, field-induced shifts of such equilibria are 
typically quite small. Such shifts can become significant if exceptionally low 
temperatures can be attained (perhaps for reactions occurring in a supersonic 
expansion) or exceptionally large ratios of p / B  (as for large, very polar molecules). 
Note that at very low temperatures, Y -+ 0, the equilibrium constant is not affected by 
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the presence of the field ; under such conditions only the ground state is populated and 
so the altered spacing between levels no longer matters. 

7. Discussion 
Our chief motivation has been to provide means to readily estimate thermodynamic 

properties for gas-phase molecules subject to strong external fields at relatively low 
temperatures. Both the method and results seem likely to find wider application. The 
simplicity and accuracy afforded by Pitzer's procedure, correcting the classical 
partition function by the harmonic oscillator ratio, recommend it for many problems 
involving strong perturbations. The results obtained here for pendular molecules are 
also applicable to condensed phase systems if interactions among the molecules are 
much less significant than with the external field. 

The pendular functions may indeed even prove useful in modelling the effect of 
internal fields exerted by neighbours in a liquid or solid. The tumbling of a linear 
molecule in a condensed phase is more aptly represented by a spherical rather than a 
planar pendulum. At low temperatures or high density, the molecules in condensed 
phases are chiefly confined to librational or jostling motions, with occasional 
excursions to adjacent potential minima. This is much like hindered internal torsion 
within molecules such as ethane. The hindering potential barrier is not a constant, 
however, but depends on the orientation and density of packing of neighbouring 
molecules. As the temperature is increased or density lowered, the jostling increasingly 
turns into tumbling. Heat capacity curves of molecular solids often show anomalies 
resembling the bumps seen in figures 12 and 13, although sometimes much sharper. 
These are usually attributed to a rather sudden transition from librational to 
rotational motion. The sharpening stems from the cooperative effect of the mutual 
rotation of neighbouring molecules, which weakens the hindering potential and so 
makes the transition occur more abruptly. The cooperative behaviour thus might be 
simulated by averaging over a range of the interaction parameter. In such ways, the 
easily evaluated pendular properties may serve to induce useful hybridization among 
treatments of many dynamical phenomena involving inhibiting but pliable barriers. 
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Appendix : Partition functions with shifted reference energy 
A .  1, Permanent dipoles 

An alternative choice refers the energy zero to the ground field-free state; then 
V(8) = V,(S), and integral (12c) yields 

Q:I(a) = a-l sinh CI (All 
A consistent expression for the Q,,,(u) term is obtained by referring the librator energy 
limit to the potential minimum, i.e. by taking Eo/B = -GO: 

m 
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344 Statistical mechanics of pendular molecules 

The resulting approximation to the partition function then becomes 

Qo(o, r )  = Ycr-' sinh ct u2 exp (- u) [ 1 - exp ( - u)]-'. (A41 

A.2. Induced dipoles 
Alternatively, by taking V(0) = V,(0), integral (12c) yields 

The corresponding librator partition function is obtained with Eo/B = - Am--0, : 
m 
Y 

Qpi,(v) = 2 ( N +  l)exp[-(N+ l)v] = 2exp(-o)[l-exp(-u)]-*. (A6) 
N=O 

Thus 

and the alternative approximate partition function is 
QhAu) = v2exp ( - u )  11 - ~ X P  ( - ~ > l - ~  = [Q,"/Q:J,i, ('47) 

QO(A0, Y) = Y- e'' (a) u2 exp ( - o) [I - exp ( - o)]-~ 2A 
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